等腰三角形说课稿

手机访问:等腰三角形说课稿

等腰三角形说课稿范文(通用5篇)

  在教学工作者开展教学活动前,时常会需要准备好说课稿,说课稿有助于学生理解并掌握系统的知识。那么大家知道正规的说课稿是怎么写的吗?以下是小编精心整理的等腰三角形说课稿范文(通用5篇),仅供参考,大家一起来看看吧。

  等腰三角形说课稿1

  一、说教材

  1、教材的地位与作用

  等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。

  2、教学重点和难点

  本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。

  二、说教学目标

  1、学情分析

  我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。

  2、三维目标

  根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征 ,我制定如下目标:

  知识与技能目标:

  了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。

  过程与方法目标:

  通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究-猜想-归纳-论证)。

  情感态度与价值观目标:

  通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。在操作活动中,培养学生的合作精神,在独立思考的同时能够认同他人. 感受合作交流带来的成功感,树立自信心.

  三、说教法与学法

  1、教法

  根据教材分析和目标分析,我确定本课主要的教法为探究发现法。采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。

  2、学法

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。

  四、说教学流程

  《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。因此本节课我分以下六个环节组织教学。

  (一)创设情境,激发兴趣。

  1、多媒体展示房屋人字架、艾佛尔铁塔、龙塔、香港中国银行大厦的图片,问:你认识图片中的建筑物吗?图片中存在哪些几何图形? (等腰三角形、四边形、梯形)

  2、四幅图中都有哪种几何图形?(等腰三角形)

  (通过实例的电脑展示,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景。在学习中,只有调动学生的非智力因素,特别是内在动机,才能使他们产生强烈的求知欲和以饱满的热情来学习新知识。)

  (二) 观察实物,形成概念。

  活动:学生通过观察自带的等腰三角形纸片认识等腰三角形的有关概念。

  接着,我利用电脑演示等腰三角形定义的数学语言表达方式。

  (让学生归纳定义增强学生的成就感,给出数学语言的表达,是为了培养学生文字语言、图形语言和符号语言的转化能力.同时也能培养学生正向思维和逆向思维的能力。)

  等腰三角形说课稿2

  一、 教材分析

  (一)、教材内容的地位和作用

  《分割等腰三角形》是新教材第十四章《三角形》之后的探究课,我根据本校班级学生基础知识掌握良好、认知能力良好但是思维品质缺乏、尖子生凤毛麟角等实际情况下,降低要求设计的一节课,三角形是平面几何最简单的直线型封闭图形,三角形的知识是进一步探究学习其他图形性质的基础;这个学习阶段,处在是演绎几何向论证几何的过渡期,本章对三角形的研究呈现从一般到特殊的过程,而等腰三角形对于学生学习和研究轴对称性具有重要意义。本节课《分割等腰三角形》的设计也遵循了这个规律,从研究一般三角形到等腰三角形,探究过程中还可以帮助学生理解和掌握运用三角形知识,通过探究活动,不仅加强探索实践精神,而且还让学生感受到我国古老的数学文明,激发探索热情。

  (二)、教学目标

  根据新的《课程标准》要求和教材分析,结合本班学生实际情况,制定如下教学目标:

  1.学会探究把一个一般的三角形分成两个等腰三角形的条件,进而会探究将一个等腰三角形分割成两个等腰三角形,计算可以被分割的等腰三角形的度数.

  2.体现数形结合、分类讨论的思想。

  3.培养学生的自主探究的意识,初步掌握探究的一般思路和独立思考的习惯、提高解决问题的能力.

  (三)、教学重点、难点

  教学重点、难点:探究把一个一般的三角形分割成两个等腰三角形的思路.

  探究把一个一般的三角形分割成两个等腰三角形的一般规律。

  二、 教法、学法分析

  本节课涉及的知识点有等腰三角形的“等边对等角”、“等角对等边”、“三角形内角和”定理(“三角形一个外角等于和它不相邻的两个内角之和”定理),都是前阶段学生经常使用的熟悉知识,计算分割好的三角形中角之间的关系应该不难,因此本节课将用较多的时间引导学生如何根据图形探究分割的方法和规律,教师以多媒体为教学平台,通过精心设计问题和有效的激励机制充分调动学生的学习积极性,达到事半功倍的教学效果。而学生也在老师的鼓励引导下,小结方法,通过小组讨论等方式体会知识的应用和数学思考的方法增强学习的成就感和自信心,培养学生的探索精神和探究能力。

  三、教学程序设计

  教学过程

  设计思路和各环节分析

  (一) 展示教材第110页例题3,以回顾作为引入:

  例3:如图 点D在⊿ABC的边AC上,已知∠A=100°,∠ABC=60°∠ABD=40°。试指出图中相等的线段并说明理由。

  提问:本题的⊿ABC是一个一般三角形,BD将此三角形分割成了两个等腰三角形,若将题目改为“已知⊿ABC中∠A=100°,∠ABC=60°”你能画直线,将此三角形分割成两个等腰三角形吗?

  提示:

  (1)能否过两个顶点画直线(否定)

  (2)不过任何顶点画直线?(过两边则一为三角形另一个为四边形,否定)

  (3)能否经过最小角的顶点画直线?(否定)

  结论一:过三角形一个顶点画直线,保留最小角。

  2、是不是所有的三角形都可以分成两个等腰三角形?如果不是,则要满足什么条件?

  (二) 探索交流,获得新知

  如图,△ADC 是等腰三角形,延长AD到B,如果假定△BCD也是等腰三角形,则有以下三种情况,即:

  (1)BD=DC ;

  (2)CD=BC ;

  (3)BD=BC.

  下面分别加以讨论.

  (1) 如果BD=DC,则有∠B=∠BCD .

  又因为AD=DC ,所以∠A=∠ACD .

  所以∠A+∠B+∠ACB =180°

  所以 2∠ACB =180°,∠ACB =90°.

  所以 这个三角形必定是直角三角形.即直角三角形一定可以被分割成两个等腰三角形。

  (2)如果CD=BC,设∠A =α,如图因为 AD=DC,所以∠ACD =α,∠BDC=∠A+∠ACD=2α,而因为CD=BC,所以∠B =∠BDC = 2α,所以 ∠B =2∠A.

  所以 这个三角形必定有一个角是另一个的2倍.

  (3)如果BD=BC,设∠A =α,如图 同上推得∠BDC=2α.

  因为 BD=BC,所以∠BCD =∠BDC=2α,

  所以∠ACB=∠ACD+∠DCB=α+2α=3α,即∠AC B= 3∠A.

  所以 这个三角形必定有一个角是另一个的3倍.

  结论二:一个任意三角形具备下列三个条件之一就可以被分割成两个等腰三角形.:

  ① 一个角是90°,

  ② 一个角是另一个角的2倍,

  ③ 一个角是另一个角的3倍,

  三.尝试实践

  给定一张等腰三角形纸片,剪一刀后,被分成两个等腰三角形纸片,这个原等腰三角形的每个内角角是几度?把所有符合要求的等腰三角形尽可能的列举出来。

  分析:分类(1)顶角比底角大时,经过等腰三角形顶角的顶点画直线(保留最小角原则)

  1. BD=AD=DC时又AB=AC。

  ∴∠BAC = 90°

  ∠ABC =∠ACB=45°

  2 .(一个角是另一个角的3倍) BD=AD ,DC=AC, 且AB=AC。

  ∴∠BAC = 108°

  ∠ABC=∠ACB=36°

  (2)当底角比顶角大时,经过底角顶点画直线

  3 .(一个角是另一个角的2倍),BC=BE且BE=AE,AB=AC。

  ∴∠BAC = 36°∠ABC=∠ACB=72°

  4 .(一个角是另一个角的 3倍),BC=CE且BE=AE,AB=AC。

  ∴∠BAC =

  ∠ABC=∠ACB=

  四、 小结:

  1.进一步探究把一个一般的三角形分成两个等腰三角形的条件和思路.满足其中三个条件之一的三角形才可以被分成两个等腰三角形.

  2.利用一般三角形所具有的条件解决特殊三角形的问题.

  五、作业

  试一试

  1、已知⊿ABC中∠A=120°,∠ABC=40°试用一条直线将此三角形分割成两个等腰三角形。

  2、 将一个等边三角形分割成四个等腰三角形(画出分割线,标上必要的符号)

  引入课题,是许多同仁热衷研究的内容,我认为,与其生搬硬套不如开门见山,利用学生已有的记忆,运用曾经出现过的例题3,以考核学生的记忆力和快速的反应能力,激发学生快速进入角色,兴致盎然,本题的计算也基本上复习了本课需要的几个重要定理的同时也通过此题的结论给学生一个直观的`分割三角形的形象,变式引出后面的内容。

  此处主要解决怎么画的问题,也为后面解决求等腰三角形各个内角度数时解决怎么画的打下伏笔。

  本题以老师引导到为主。由共同探讨,一可以减少时间,二可以降低难度,也为后面学生的自主探讨积累经验,得出结论并掌握。

  自然转折,符合常理。由问题2将本节课盲目尝试分割等腰三角形转化为有选择的判断怎样的三角形可以分割成两个等腰三角形,在有目的的进行分割,从而过渡到第二部分教学。

  数形结合,利用图形找到三角形内角之间的关系。得出第一类三角形形状是直角三角形,有时间的话,这个结论可以放课后讨论验证它的正确性。

  有了第一种探究,第二第三种探究结论就可以让学生与老师互动合作探究,很快得出结论,学生因为有了经验,自然就有了兴趣,更为后面等腰三角形分割,积累了第二个必不可少的经验。

  最后得出的结论,可以帮助学生初步判断具备什么条件的三角形可以分割成两个等腰三角形,然后由一般到特殊,体现思路的一般规律,也顺利的引出后面的实践内容。

  小组合作,让接受能力强的学生带动学能相对薄弱的同学,共同完成,共同进步。

  一般三角形画线,得到的是角和角之间的关系,加上新的条件,就可以具体计算角的度数,因此此处的难点就比较顺当的解决了。分割等腰三角形成两个等腰三角形,可以综合使用并验证之前得到的两个结论,加强了学生解决问题的能力,使学生更深刻的掌握知识。

  此处发现了教学参考上一个错误:BE=EC是不对的。

  及时小结,使学生及时反思,互相提醒,让更多的学生最大程度记住本课的知识要点。

  这两个作业,分别有两种、四种分割结果,可以让不同层次的学生体验,发挥主观能动性。

  六、板书

  课题:怎样的三角形可以被分割成等腰三角形?

  结论一:分割原则:

  过三角形一个顶点画直线,保留最小角

  结论二:一个任意三角形具备下列三个条件之一就

  可以被分割成两个等腰三角形:

  ① 一个角是90°,

  ② 一个角是另一个角的2倍,

  ③ 一个角是另一个角的3倍,

  七、反思补充

  新的课程标准要求教师根据自己的学生合理选择教学素材、安排教学内容,作为老师,既要尊重教材,又要挖掘教材,加入了本课一般三角形满足什么条件可以被分割成等腰三角形的一般规律,以找出一些课本之外的共性的东西,提高学生的好奇心和学习的积极性。

  在学习合作的教、学过程中,我注重及时的肯定学生的点点创新和智慧的火花,例如“探索交流,获得新知”中,当一个三角形是等腰三角形确定之后,另一个三角形是等腰三角形,边与边之间的相等有三种情况,只要有学生提出,就大力赞赏以此作为激励学生,注重学习过程的评价,让学生在学习中感悟、体验数学课堂的神奇。

  本人愚见,若有不当之处欢迎各位专家评委批评指正,谢谢!

  等腰三角形说课稿3

  一、教材分析

  1、教材的地位和作用

  《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。

  2、教材的教学目标:

  ①知识与技能目标:

  掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。

  ②过程与方法目标:

  通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。③情感与态度目标:

  通过合作交流培养学生团结协作、乐于助人的品质。

  3、教学重点与难点:

  重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。

  二、学情分析

  八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。

  三、教法与手段

  根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

  四、学法设计

  《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。

  五、教学过程设计

  (一)创设情景、导入新课

  ①复习提问:向同学们出示几张精美的建筑物图片,引入等腰三角形。

  (设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。)

  ②等腰三角形的相关概念:

  定义:两条边相等的三角形叫做等腰三角形。

  边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。

  角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  ③设问:等腰三角形具有哪些特殊的性质呢?(引入新课)

  (二)实验探索、得出猜想:

  ①动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小

  和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。

  (设计意图:以六人小组为单位学生亲自操作实验,填写导学案。通过组内合作与交流,集

  思广益让学生用自己的语言在小组内表达自己的发现。)

  ②得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论:

  (1)等腰三角形是轴对称图形

  (2)∠B=∠C

  (3)BD=CD,AD为底边上的中线

  (4)∠ADB=∠ADC=90°,AD为底边上的高线(5)∠BAD=∠CAD,AD为顶角平分线

  (设计意图:以小组为单位派代表发言即组间交流补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的知识体系,为进一步探索做准备。)

  (三)证明猜想、形成定理:

  1、结论(2)∠B=∠C你能用一个命题表达这一结论并论证它的正确性吗?

  (1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”)

  (2)怎样论证这个一命题的正确性呢?

  ①为证∠B=∠C,需要添加辅助线构造以∠B、∠C为元素的两个全等三角形。

  ②探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。

  设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同(作高、中线、角平分线)的方法来解决问题。

  利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。

  (3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗?

  (1)结合性质一的证明鼓励学生证明总结的命题

  (2)得出等腰三角形的性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。

  (3)“三线合一”的几何表达:

  如图,在△ABC中,AB=AC,点D在BC上

  ①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  ②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(为了方便记忆可以说成“知一求二!”)

  ③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  2设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。

  (四)实例剖析、巩固新知:

  1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数

  2、例2:在△ABC中,AB=AC,点D是BC的中点,∠B=30

  (1)求∠ADC的度数(2)求∠BAD的度数

  此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。

  解:(1)∵AB=AC,D是BC边上的中点(已知)

  ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三线合一”)∴∠ADC=∠ADB=90°(垂直的定义)

  (2)∵∠BAD+∠B+∠ADB=180°(三角形内角和等于180°)∴∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°

  (设计意图:设计例题1巩固等腰三角形“等边对等角的性质”的理解,让学生学以致用,获得成就感,增强学习数学的自信心。而例题2主要是体会等腰三角形“三线合一”性质的运用。这两个例题作为课本上的例题是基础新知的巩固,要求能正确的写出解题过程。)

  (五)课堂练习、总结所得:

  1、先完成课后81页练习1、2、3、4题

  (设计意图:作为课本上的练习题的完成达到检测学生对本节课知识的掌握情况,从而帮助学生查漏补缺,巩固基础知识。)

  2、学以致用:

  (设计意图:让书生体会数学知识和实际生活的紧密联系)

  如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的.建筑工人师傅对这个建筑物做出了两个判断:

  ①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。

  ②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。

  请同学们想想,工人师傅的说法对吗?请说明理由。

  设计意图:运用所学知识解决实际问题,引导学生将实际问题转化为数学问题,进一步加深学生对等腰三角形性质的理解和运用;从数学回到实际生活,自然地渗透数学作用于实际问题的思想。

  3、课堂小结

  今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?设计意图:帮助学生回顾,归纳,巩固所学知识。A(六)作业布置、深化提高:

  1、课本P84:习题13.31、2、3;(必做题)

  2、(思维发散)选做题

  已知:如图△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

  求证:∠ACE=∠BC

  六、板书设计

  等腰三角形说课稿4

  一、教材分析

  本探究活动是继等腰三角形性质、判定之后探索能分割成两个等腰三角形的条件的内容。学习等腰三角形,离不开线段的相等和角相等,《分割等腰三角形》将加深同学们对等腰三角形地认识,是等腰三角形内容的延续和拓展。同时,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括的能力

  二、学生起点分析

  七年级下学期的学生,从年龄特点看:他们好奇心强,思维活跃,喜欢动手操作,厌倦枯燥乏味的传统教学;从知识储备上看:他们已经掌握了三角形、等腰三角形有关知识,如三角形内角和、等腰三角形的性质、等腰三角形的判定等等;从技能水平上看:他们已经初步具有自主探索能力、合作交流能力。

  三、教学目标及重难点

  1、经历可以分割成两个等腰三角形的条件的探索过程,培养探索精神和合情推理能力;

  2、在活动中,体会知识的运用和数学思考的方法;

  3、通过探索条件的实践过程,体会数学推理的乐趣,增强合作交流意识。

  [教学重点]:可以分割成两个等腰三角形的条件的探索过程。

  [教学难点]:作等腰三角分割成两个等腰三角形的图形

  四、教与学的方式

  1、创设情境,激发兴趣。

  2、小组活动,探求新知

  3、梳理概括,形成结构

  4、布置作业拓展延伸

  授人以鱼,不如“授人以渔”整节课中我始终贯彻“自主参与,自主探究,合作交流,自主构建”的教育理念,采用“探,疑、研,悟”等环节主体探究。让学生在自主,合作,探究的浓厚氛围中掌握知识,形成技能,培养感情。充分体现科学性和人文性的统一。

  五、教学流程设计

  1、创设情境,激发兴趣。

  情景一、学生阅读第120页的《阅读理解》

  这样设计:可以让学生通过阅读理解,初步认识图形分割的意义,培养数学阅读的兴趣和方法。也为后面的如何分割做了复习。

  情景二:在动听的音乐声中,大屏幕上循环播放生活中有关的等腰三角形的图片。图片最后出现等腰三角形花坛。

  教师拿出一个等腰三角形和一把剪刀,提问:谁来帮老师分割这个三角形花坛,使它变成两个三角形以便可以种上不同的花?

  这样设计:一是用他们熟悉或感兴趣的问题情境引出学习主题,激发了学生探究知识的欲望,能够较好地调动学生的学习兴趣。二是进一步体味数学就在我们身边,生活中处处都有数学。

  学生上台演示。这时,教师可以引导学生有两种分割方法:一种是分割线经过顶角顶点;一种是分割线经过底角顶点。

  这样设计:为后面的分类讨论思想打下铺垫

  2、小组活动,探求新知

  第一部分:教师追问:已知花坛的三个角分别为36°、72°、72°,你可以分割成两个等腰三角形吗?如果老师把三角形的三个内角改成20°、20°、140°,你还能分吗?

  合作:小组合作设计两个三角形,使这两个三角形都可以被分割成两个等腰三角形。

  学生展示图片,讲解分割思路。(教师反问:为何不从顶角的顶点分割?)

  归纳小结:当顶角小于底角时,分割线经过底角的顶点,反之,顶角大于底角时,分割线经过顶角的顶点。

  质疑:任何三角形都能被分割成两个等腰三角形吗?

  这样设计:从特殊的三角形出发,加上学生对这个三角形比较熟悉,学生比较好操作,再到一般三角形,从而产生质疑:不是所有的等腰三角形都可以分成两个等腰三角形,起了承上启下的作用。

  第二部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角的关系?

  学生动手画顶角分别是锐角、直角、钝角的等腰三角。

  这样设计:让学生感知等腰三角形的多样性,为分类讨论思想打下铺垫

  设底角为X度,小组合作作图,并求出顶角的度数(X的代数式表示):第一、二组研究分割线经过顶角的顶点的情况,后两组研究分割线经过底角的顶点的情况。

  这样设计:是让学生亲历科学发现的全过程,初步掌握研究性学习的学习方法。

  通过作图求解,学生可以求出:顶角是底角的2倍、3倍、倍。对于倍,教师适当引导。

  第三部分:探索能分割成两个等腰三角形的这个等腰三角形每个内角是几度?学生根据内角和180度,求出角度。

  3、梳理概括,形成结构

  知识:分割成两个等腰三角形的条件和方法;体验:探究活动中的感悟。教师适当引导补充,并对学生的表现适当评价,给予鼓励。

  4、布置作业拓展延伸

  分层作业:必做题:把一个角为36°的等腰三角形分成4个等腰三角形。

  选做题:把角度分别20°、20°、140°等腰三角形分成三个等腰三角形。

  这样设计:一是想以动手操作开始,再以动手操作结束,使课堂教学浑然一体;二是让学习从课上走到课下,让一种学法得以构建,让一种思想得以延续。

  六、教学反思:

  我努力给学生创造自主探索、合作交流的舞台,无论环节设计,还是作业的安排,都关注了学生的个体差异,注重了学生的数学体验。通过操作、观察、质疑、验证、深化等自主探索活动。丰富知识、提升能力、获得体验。使学生初步具有自主学习之法、终身学习之愿、快乐学习之情。

  等腰三角形说课稿5

  一、教材分析

  本节课是在学习了轴对称图形以及全等三角形的判定的基础上进行的,主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”两个性质。本节内容是对前面知识的深化和应用,它的性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习线段垂直平分线、等腰梯形的预备知识。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  二、教学目的

  (一)知识目标:知道等腰三角形的定义及相关概念,理解等腰三角形的性质,会利用等腰三角形的性质进行简单的推理、判断和计算。

  (二)能力目标:通过实践,观察,证明等腰三角形性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高分析问题、解决问题能力。

  (三)情感目标:在实际操作动手中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。

  三、教学重、难点

  (一)重点:等腰三角形的性质的探究及应用

  (二)难点:等腰三角形“三线合一”性质的运用

  四、教学方法

  (一)教法:本节课采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

  (二)学法:本节课主要引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  五、教学过程

  (一)创设情景,引入新知

  我们学过三角形,你都知道哪些特殊的三角形?今天我们来学习其中的一种特殊的三角形——等腰三角形。

  等腰三角形的有关概念,轴对称图形的有关概念。

  提问:等腰三角形是不是轴对称图形?什么是它的对称轴?

  (二)实验探索,大胆猜想

  教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

  (三)证明猜想,形成定理

  让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

  1、性质定理1:

  等腰三角形的两个底角相等

  在△ABC中,∵AB=AC()∴∠B=∠C()

  2、性质定理2:

  等腰三角形的顶角平分线、底边上的中线和高线互相重合

  (1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()

  (2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()

  (3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()

  (四)应用举例,强化训练

  指导学生表述证明过程。

  思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

  (五)归纳小结,布置作业

  1、归纳:

  (1)等腰三角形的性质定理。

  (2)等边三角形的性质

  (3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

  (4)联想方法要经常运用,对解题大有裨益。

  2、作业布置:

  (1)必做题:

  书本课后作业

  (2)选做题:搜集日常生活中应用等腰三角形的实例,并思考这些实例运用了等腰三角形的哪些性质?

【等腰三角形说课稿范文(通用5篇)】相关文章:

1.《鸟的天堂》说课稿(通用6篇)

2.王愿坚《草》说课稿范文

3.《桥》说课稿

4.《太阳》说课稿

5.《林海》说课稿

6.《狼》说课稿

7.《春望》说课稿

8.《口技》说课稿设计

9.《称象》说课稿

本文地址: http://www.liuxuepaper.com/zw/69098.html

等腰三角形说课稿
《等腰三角形说课稿》
建议您下载Word文档到电脑,方便收藏和打印.
推荐度:
点击下载等腰三角形说课稿
点击下载文档

文档为doc格式